Learning Discriminative Representations to Interpret Image Recognition Models Supplementary Material

Felipe Torres Figueroa

École Centrale de Marseille

QARMA - Laboratoire d'Informatique et de Systèmes (LIS)

Marseille, September 23rd 2024

<ロト < 団 > < 臣 > < 臣 > 三 の < で 1/25

Table of Contents

CA-Stream

Gradient

References

<ロト < 団 > < 臣 > < 臣 > 三 の < で 2/25

Opti-CAM: Optimizing saliency maps for interpretability

CA-Stream: Attention-based pooling for interpretable image recognition

A learning paradigm for interpretable gradients

Table of Contents

CA-Stream

Gradient 00000 References

Opti-CAM: Optimizing saliency maps for interpretability

- 2 CA-Stream: Attention-based pooling for interpretable image recognition
- 3 A learning paradigm for interpretable gradients

Evaluating Interpretability Interpretable Image Recognition

CA-Stream

Opti-CAM

An explanation should demonstrate similar predictive properties to its query:

ł

Explanation Map. (E^c)

 $P_i^c = 0.8756$

Input image. (1)

 $O_i^c = 0.7442$

AD(%) :=
$$\frac{1}{N} \sum_{i=1}^{N} \frac{[y_i^c - o_i^c]_+}{y_i^c} \cdot 100$$
 (1)

$$AI(\%) := \frac{1}{N} \sum_{i} \mathbb{1}_{y_{i}^{c} < o_{i}^{c}} \cdot 100 \qquad (2)$$

$$AG(\%) := \frac{1}{N} \sum_{i=1}^{N} \frac{[o_i^c - y_i^c]_+}{1 - y_i^c} \cdot 100 \quad (3)$$

Gradient

References

Causality Analysis

CA-Stream

Gradient

References

Saliency guided perturbations revelal the importance of salient regions.

Algorithm 1: Insertion Algorithm

Input: black-box f, image x, saliency map s^c , number of pixels N removed per step.

Output: insertion score *ins*. $n \leftarrow 0$

 $x' \leftarrow \operatorname{Blur}(x)$ $p_n^c \leftarrow f(x)$ while $x \neq x'$ do

According to *s*, set the next *n* pixels in x' to corresponding pixels in *x*

```
\begin{array}{l} n \leftarrow n+1 \\ p_n^c \leftarrow f(x') \\ ins \leftarrow \text{AreaUnderCurve}(p_n^c \text{vs.}i/n, \forall i=0,...n) \\ \textbf{return } ins \end{array}
```

Opti-CAM ○○○●○○○○

Interpretability Causality Analysis CA-Stream

Gradient 00000 References

Saliency guided perturbations revelal the importance of salient regions.

```
Algorithm 2: Deletion Algorithm
```

Input: black-box f, image x, saliency map s^c , number of pixels N removed per step.

Output: deletion score del.

n ← 0

 $p_n^c \leftarrow f(x)$

while x has non-zero pixels do

According to s, set the next n pixels in x to 0

 $n \leftarrow n + 1$

 $p_n^c \leftarrow f(x)$

 $del \leftarrow \text{AreaUnderCurve}(p_n^c \text{vs.} i/n, \forall i = 0, ...n)$

return del

Interpretability Weakly Supervised Object Localization

Opti-CAM

$$\mathsf{OM} := 1 - \left(\max_{B \in \mathbb{B}} \mathsf{loU}(B, B_{\rho})\right) \mathbb{1}_{c_{\rho}=c}, \ \ (4)$$

$$\mathsf{LE} := 1 - \max_{B \in \mathbb{B}} \mathsf{IoU}(B, B_{\rho}). \tag{5}$$

$$P := \frac{\sum_{\mathbf{p} \in U} S_{\mathbf{p}}^{c}}{\sum_{\mathbf{p}} S_{\mathbf{p}}^{c}}$$
(6)

CA-Stream

$$R := \frac{\sum_{\mathbf{p} \in U} S_{\mathbf{p}}^{c}}{|U|}.$$
 (7)

 $\mathsf{BoxAcc}(\eta, \delta) := \max_{B \in \mathbb{B}} \mathbb{1}_{\mathsf{IoU}(B^{\eta}_{\rho}, B) \ge \delta}.$ (8)

$$\mathsf{SP} := \mathbb{1}_{\mathbf{p}^* \in U}. \tag{9}$$

$$\mathsf{SM} := \log \max\left(0.05, \frac{|B_{\mathcal{P}}|}{hw}\right) - \log \mathcal{P}^{c},$$
(10)

Gradient

References

Opti-CAM OCCO Results Qualitative Evaluation

CA-Stream

Gradient

References

<ロ> < □ > < □ > < 三 > < 三 > < 三 > < 2 > < 8/25

Opti-CAM OCCO Results Qualitative Evaluation

CA-Stream

Gradient

References

<ロ><日><日><日><日><日><日><日><日><日><日><10</td>

Results

Quantitative Experiments

CA-Stream

Gradient

References

Classification Metrics on Transformers:

Метнор	VIT-B				DEIT-B			
	$AD{\downarrow}$	AG↑	AI↑	T(s)	AD↓	AG↑	AI↑	T(s)
Fake-CAM	0.3	0.4	48.3	0.00	0.6	0.3	44.6	0.00
Grad-CAM	69.4	2.5	12.4	0.14	33.5	1.7	12.5	0.11
Grad-CAM	86.3	1.5	1.0	0.15	50.7	0.9	7.2	0.13
Score-CAM	32.0	6.2	33.0	23.69	53.6	2.2	12.2	22.47
XGrad-CAM	88.1	0.4	4.3	0.13	80.5	0.3	4.1	0.12
Layer-CAM	82.0	0.2	2.9	0.24	88.9	0.4	2.6	0.24
ExPerturbation	28.8	6.2	24.4	133.52	60.9	2.0	8.5	129.12
RawAtt	92.6	0.2	2.8	0.02	95.3	0.0	1.8	0.02
Rollout	42.1	5.6	20.9	0.02	55.2	0.8	7.9	0.02
TIBAV	81.7	0.8	5.8	0.16	62.3	0.7	7.1	0.16

Results

Quantitative Experiments

CA-Stream

Gradient

References

Classification Metrics on Transformers:

Метнор	VIT-B				DEIT-B			
	$AD{\downarrow}$	AG↑	AI↑	T(s)	AD↓	$AG\uparrow$	AI↑	T(s
Fake-CAM	0.3	0.4	48.3	0.00	0.6	0.3	44.6	0.0
Grad-CAM	69.4	2.5	12.4	0.14	33.5	1.7	12.5	0.1
Grad-CAM	86.3	1.5	1.0	0.15	50.7	0.9	7.2	0.1
Score-CAM	32.0	6.2	33.0	23.69	53.6	2.2	12.2	22.4
XGrad-CAM	88.1	0.4	4.3	0.13	80.5	0.3	4.1	0.1
Layer-CAM	82.0	0.2	2.9	0.24	88.9	0.4	2.6	0.2
ExPerturbation	28.8	6.2	24.4	133.52	60.9	2.0	8.5	129.1
RawAtt	92.6	0.2	2.8	0.02	95.3	0.0	1.8	0.0
Rollout	42.1	5.6	20.9	0.02	55.2	0.8	7.9	0.0
TIBAV	81.7	0.8	5.8	0.16	62.3	0.7	7.1	0.1
Opti-CAM	0.6	18.0	90.1	16.05	0.9	26.0	83.5	15.

Results

Quantitative Evaluation

CA-Stream

Gradient

References

Localization Experiments:

METUOD				ViT-B							DeiT-B			
METHOD	OM↓	LE↓	F1↑	BA↑	SP↑	EP↑	SM↓	OM↓	LE↓	F1↑	BA↑	SP↑	EP↑	SM↓
Fake-CAM	62.8	54.0	57.7	47.9	99.8	28.6	0.87	61.4	54.0	57.7	47.9	99.8	28.7	0.83
Grad-CAM	79.6	74.3	29.4	45.0	58.1	31.0	3.27	65.5	60.3	44.3	47.2	62.8	30.2	1.20
Grad-CAM++	84.2	80.6	14.8	23.8	51.4	27.3	4.15	70.6	67.2	34.3	43.6	57.7	30.3	2.14
Score-CAM	77.6	71.6	46.0	54.3	66.1	33.1	3.14	79.9	76.2	31.9	43.8	63.4	32.2	3.14
XGrad-CAM	82.0	76.9	19.6	41.3	52.8	28.5	3.31	82.0	78.4	19.5	44.1	53.4	28.8	3.03
Layer-CAM	70.7	63.9	20.6	50.5	60.7	32.6	1.44	80.2	77.3	17.6	50.8	62.7	35.1	3.15
ExPerturbation	71.5	64.9	35.9	44.6	62.3	35.3	1.34	69.9	64.3	36.2	44.2	63.1	35.5	1.16
RawAtt	72.4	64.8	18.5	50.4	55.4	31.6	1.68	73.5	68.2	5.9	48.1	46.5	27.3	1.91
Rollout	67.6	58.8	36.9	50.7	57.8	30.0	1.16	63.9	57.0	27.8	47.9	36.5	27.2	0.94
TIBAV	70.1	63.1	26.6	58.8	66.1	35.0	1.23	68.2	62.2	28.1	59.6	64.1	33.5	1.08
Opti-CAM (ours)	64.4	54.6	54.5	48.0	58.2	28.7	0.98	62.3	55.1	53.9	48.0	55.1	28.8	0.84

CA-Stream

Gradient

References

Table of Contents

CA-Stream: Attention-based pooling for interpretable image recognition

3 A learning paradigm for interpretable gradients

<ロト < @ ト < 注 ト < 注 ト 注 の < で 11/25

CA-Stream ○●○○○○○○ Gradient

References

Results Qualitative Experiments

CA-Stream

Gradient

References

Results Quantitative Experiments

NETWORK	Метнор	POOL	$AD{\downarrow}$	AG↑	AI↑	I↑	D↓
ResNet-18	Grad-CAM	GAP CA	17.64 16.99	12.73 17.22	41.21 44.95	63.13 65.94	10.66 10.68
	Grad-CAM++	GAP CA	19.05 19.02	11.16 14.76	37.99 40.82	62.80 65.53	10.75 10.82
	Score-CAM	GAP CA	13.64 11.53	12.98 18.12	44.53 50.32	62.56 65.33	11.37 11.51
ConvNeXT-S	Grad-CAM	GAP CA	42.99 22.09	1.69 14.91	12.60 32.65	48.42 84.82	30.12 43.02
	Grad-CAM++	GAP CA	56.42 51.87	1.32 9.40	10.35 20.55	48.28 84.28	33.41 52.58
	Score-CAM	GAP CA	74.79 64.21	1.29 8.81	10.10 18.96	47.40 82.92	38.21 57.46

CA-Stream

Gradient

References

Results Quantitative Experiments

	PASCAL VOC 2012 - RESNET-50									
	POOLING					мАР↑				
	GAP					78.32				
	CA					78.35				
INTERPRETABILITY METRICS										
Метнор	POOLING	AD↓	AG↑	Al↑	I ↑	D↓				
Grad CAM	GAP	12.61	9.68	27.88	89.10	59.39				
GIAU-CAM	CA	12.77	15.46	34.53	88.53	59.16				
Cred CAM	GAP	12.25	9.68	27.62	89.34	54.23				
Grad-CAM++	CA	12.28	16.76	34.87	89.02	53.34				
0	GAP	14.8	6.76	36.41	71.10	39.95				
Score-CAM	CA	10.96	21.35	43.82	89.21	51.44				

< ロ > < @ > < 注 > < 注 > 注 の < ? 14/25

CA-Stream

Gradient 00000 References

Results Quantitative Experiments

	СИВ-200-2011 - ResNeт-50									
	POOLING					Acc↑				
	GAP					76.96				
	CA					75.90				
INTERPRETABILITY METRICS										
Метнор	POOLING	AD↓	AG↑	Al↑	I↑	D↓				
Grad CAM	GAP	10.87	10.29	45.81	65.71	6.17				
Grau-CAM	CA	10.44	17.61	53.54	74.60	6.56				
Grad CAM	GAP	11.35	9.68	44.32	65.64	5.92				
Grad-CAM++	CA	11.01	16.50	51.63	74.64	6.21				
Scoro-CAM	GAP	9.05	10.62	48.90	65.58	5.94				
Score-CAM	CA	6.37	19.50	60.41	74.22	2.14				

<ロト < @ ト < 主 ト < 主 ト ミ の < で 15/25

Results

Quantitative Experiments

CA-Stream ○○○○○●○○ Gradient

References

ACCURACY AND PARAMETERS PLACEMENT CLS DIM **#PARAM** Acc↑ $S_0 - S_4$ 64 6.96M 74.70 $S_1 - S_4$ 256 6.95M 74.67 $S_2 - S_4$ 512 6.82M 74.67 $S_3 - S_4$ 1024 6.29M 74.67 $S_4 - S_4$ 2048 4.20M 74.63

<ロ> < @ > < 三 > < 三 > 三 の < で 16/25

CA-Stream

Gradient 00000 References

Results Quantitative Experiments

INTERPRETABILITY METRICS									
Метнор	PLACEMENT	AD↓	AG↑	AI↑	I↑	D↓			
GRAD-CAM	$egin{array}{llllllllllllllllllllllllllllllllllll$	12.54 12.69 12.54 12.69 12.77	22.67 22.65 21.67 22.28 20.65	48.56 48.31 48.58 47.89 47.14	75.53 75.53 75.54 75.55 74.32	13.50 13.41 13.50 13.40 13.37			
GRAD-CAM++	$S_0 - S_4 \ S_1 - S_4 \ S_2 - S_4 \ S_3 - S_4 \ S_4 - S_4$	13.99 13.99 13.71 13.69 13.67	19.29 19.29 19.90 19.61 18.36	44.60 44.62 45.43 45.04 44.40	75.21 75.21 75.34 75.36 74.19	13.78 13.78 13.50 13.50 13.30			
SCORE-CAM	$S_0 - S_4 \ S_1 - S_4 \ S_2 - S_4 \ S_3 - S_4 \ S_4 - S_4$	7.09 7.09 7.79 7.74 7.52	23.65 23.65 23.66 23.03 19.45	54.20 54.20 54.21 52.92 50.45	74.91 74.92 74.91 74.97 74.19	14.68 14.68 14.68 14.65 14.46			

CA-Stream

Gradient 00000 References

Results Quantitative Experiments

ACCURACY AND PARAMETERS									
	REPRESENTATION			#Pa	RAM	Acc↑			
	32.53M 32.59M		74.70 74.68						
INTERPRETABILITY METRICS									
Метнор	REPRESENTATION	$AD{\downarrow}$	AG↑	Al↑	I↑	D↓			
Grad-CAM	Class agnostic Class specific	12.54 12.53	22.67 22.66	48.56 48.58	75.53 75.54	13.50 13.50			
Grad-CAM++	Class agnostic Class specific	13.99 13.99	19.29 19.28	44.60 44.62	75.21 75.20	13.78 13.78			
Score-CAM	Class agnostic Class specific	7.09 7.08	23.65 23.64	54.20 54.15	74.91 74.99	14.68 14.53			

Table of Contents

CA-Stream

Gradient 0000

References

CA-Stream: Attention-based pooling for interpretable image

A learning paradigm for interpretable gradients

Results

CA-Stream

Gradient 0000 References

Denoising effect

Qualitative Experiments

Results

CA-Stream

Gradient

References

CAM Visualizations

Qualitative Experiments

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ · 𝔅 𝔅 21/25

CA-Stream

Gradient

References

Results Quantitative Experiments

Recognition Metrics

RECOGNITION METRICS								
Model	Error	λ	Acc↑					
ResNet-18	- Cosine	- 7.5 × 10 ⁻³	73.42 72.86					
MobileNet-V2	- Cosine	$^{-}$ 1 × 10 ⁻³	59.43 62.36					

<ロト < @ ト < 主 > < 主 > 三 の < で 22/25

CA-Stream

Gradient

References

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Results Quantitative Experiments

Recognition Metrics

RECOGNITION METRICS								
Model	Error	λ	Acc↑					
ResNet-18	- Cosine	- 7.5 × 10 ⁻³	73.42 72.86					
MOBILENET-V2	- Cosine	-1×10^{-3}	59.43 62.36					

Recognition properties are maintained.

Results

CA-Stream

Gradient

References 00

Interpretability metrics

Quantitative Experiments

MOBILENET-V2									
Метнор	Error	AD↓	AG↑	Al↑	Ins↑	Del↓			
	-	44.64	6.57	25.62	44.64	14.34			
GRAD-CAIVI	COSINE	40.89	7.31	27.08	45.57	15.20			
	-	45.98	6.12	24.10	44.72	14.76			
GRAD-CANI++	COSINE	40.76	6.85	26.46	45.51	14.92			
SCORE CAM	-	40.55	7.85	28.57	45.62	14.52			
SCORE-CAIN	COSINE	36.34	9.09	30.50	46.35	14.72			
	-	45.15	6.38	25.32	44.62	15.03			
ABLAHON-CAM	COSINE	41.13	7.03	26.10	45.38	15.12			
	-	44.65	6.57	25.62	44.64	15.27			
	COSINE	40.89	7.31	27.08	45.57	15.20			

Results

CA-Stream

Gradient

References

Interpretability metrics

Quantitative Experiments

MOBILENET-V2									
Метнор	Error	AD↓	AG↑	Al↑	Ins↑	Del↓			
GRAD-CAM	-	44.64	6.57	25.62	44.64	14.34			
	COSINE	40.89	7.31	27.08	45.57	15.20			
	-	45.98	6.12	24.10	44.72	14.76			
GRAD-CANI++	COSINE	40.76	6.85	26.46	45.51	14.92			
	-	40.55	7.85	28.57	45.62	14.52			
SCORE-CAIVI	COSINE	36.34	9.09	30.50	46.35	14.72			
	-	45.15	6.38	25.32	44.62	15.03			
ABLAHON-CAIM	COSINE	41.13	7.03	26.10	45.38	15.12			
	-	44.65	6.57	25.62	44.64	15.27			
AXIOM-CAM	COSINE	40.89	7.31	27.08	45.57	15.20			

Interpretable properties are enhanced. Deletion still poses an issue.

Table of Contents

CA-Stream

Gradient 00000 References

Opti-CAM: Optimizing saliency maps for interpretability

2 CA-Stream: Attention-based pooling for interpretable image recognition

3 A learning paradigm for interpretable gradients

CA-Stream

Gradient

References ○●

<ロト < @ ト < 主 ト < 主 ト ミ の < で 25/25